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1 Summary

We use an individual-level transmission and contact simulation model to explore the e↵ectiveness and resource
requirements of various test-trace-isolate (TTI) strategies for reducing the spread of SARS-CoV-2 in the UK,
in the context of di↵erent scenarios with varying levels of stringency of non-pharmaceutical interventions
(NPIs) over the summer period.

Model Our model builds upon the individual-level model of Kucharski et al. [2020], and stratifies individual-
level transmissions by setting (household, work, school, other) from the BBC Pandemic data of 40,162 par-
ticipants in the UK. It takes into account recent research on the COVID infection timeline as well as various
logistical and temporal aspects of real-world implementations of TTI strategies, including: the inclusion
of baseline symptom presentations in the COVID-free population, non-uniform infection profile, imperfect
compliance with symptom reporting, isolating and quarantining, and non-negligible time durations needed
for reporting symptoms, testing and tracing.

We consider three TTI strategies based on our simulation model: symptom-based contact tracing, test-based
contact tracing, and additional testing of asymptomatic contacts. These strategies trade-o↵ the speed of
tracing contacts, the required number of tests, the required number of contacts traced, and the number of
person-days spent under quarantine, and demonstrate the scale and challenge of implementing an e↵ective
TTI system for controlling the COVID epidemic.

We explore the resource requirements and impacts of implementing these TTI strategies, on top of the
current UK government recommendations to self-isolate and quarantine households on COVID symptoms,
and across varying levels of stringency of other non-pharmaceutical interventions (NPIs), ranging from the
lockdown scenario prior to May 9th, to no physical distancing, school closure or working from home.

Main Findings from our simulation study are as follows. On the e↵ectiveness of TTI:

• Across the range of scenarios considered, TTI has a moderate e↵ect on R, and implementation along
with other NPIs will be necessary to control the COVID epidemic in the UK. Implemented on top
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of current UK government recommendations to self-isolate and quarantine households on COVID
symptoms, test-based TTI strategies reduce R between 10-15%, while symptom-based TTI reduces
between 15-20% (Table 2). For example, in medium stringency scenario S3, symptom-based TTI
reduces R from 1.59± 0.04 to 1.26± 0.04 and test-based TTI to 1.37± 0.04.

• The most significant reduction in transmissions of a TTI system is due to prompt self-isolation of a
symptomatic case and the quarantining of their household.

On the main factors determining the e↵ectiveness of TTI strategies:

• The amount of time required for testing and for manual contact tracing plays a significant role in
the e↵ectiveness of TTI (Figure 5 Left, Table ??). A reduction from 5 to 3 days leads to a 60-70%
improvement in e↵ectiveness of a test-based TTI strategy in our simulation. For example, in scenario
S3 a 5 day delay has an e↵ective R of 1.46 ± 0.04 while a 3 day delay has 1.37 ± 0.04, relative to
1.59± 0.04 with no TTI.

• TTI performance is strongly dictated by its coverage of transmission chains and compliance of the
general population with its guidance (Figures 5 Right and 4 Top Right). Leakages from the system
include asymptomatic COVID positive cases, symptomatic cases who do not report symptoms, and
imperfect contact tracing (e.g. of contacts unknown to the primary case). To maximize e↵ectiveness
of the TTI system, it is crucial to maximize app uptake and compliance to reduce leakages from the
system.

On resource requirements of TTI systems:

• If uptake of a contact-tracing app is insu�ciently high, manual contact tracing is necessary and is the
main resource requirement of TTI strategies.

• A typical baseline of COVID-like symptoms among the general COVID negative population means that
symptom-based TTI has low specificity and requires significantly higher numbers of manual contact
tracings and person-days quarantined (Figure 2).

• In a test-based TTI strategy, additional testing contacts has a marginal impact on R in our simulation
(due to identification of asymptomatic COVID positive contacts) but can significantly reduce the
number of person-days of contacts quarantined (Figure 2). Testing too early in the incubation period,
and likely variability in the length of incubation periods [Kucirka et al., 2020], might however lead to
missing infected contacts, and repeat testing is required.

We perform sensitivity analyses where appropriate in Section F, but find our key findings above are not
substantively a↵ected.

Limitations There are several limitations to our simulation study, both in terms of simulating transmission
dynamics and assumptions made regarding di↵erent TTI strategies:

• Our model only simulates a single generation of transmission, and does not model subsequent infections
of tertiary cases, nor the e↵ects that complex social networks will have on the spread of COVID in
society.

• As in Kucharski et al. [2020] we assume non-household contacts are only met once during the infectious
period of the primary case. This will impact both the number of contacts needed to be traced in a TTI
strategy and the timeline of infection because repeated contacts, like household contacts, are likely to
be infected earlier in a primary case’s infectious period.

• Our simulations suppose that once a primary case is isolated all potential future infections are pre-
vented. This may be unrealistic, especially for household contacts. Note that our model includes a
chance that the case may not comply with an advice to self-isolate.
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• Our model assumes that an individual’s ability to work from home is independent of their number of
daily work contacts.

• There is much that is not yet fully understood surrounding the dynamics of COVID transmission,
including: the proportion of COVID positive cases that are asymptomatic, the infectiousness of asymp-
tomatic cases and the infectiousness profile of a COVID positive individual.

• Our model assumes the beginning of an primary case’s infectious period is known when they report
symptoms. This is unlikely to hold in practice, but may not be a bad approximation under the
assumption of a 2 day pre-symptomatic infectious period. This has implications for the total number
of contacts that need to be traced, as well as the number of person days spent in quarantine.

• It is likely that lockdown and social distancing measures have lead to significant decreases in other
respiratory illnesses, as suggested by Cowling et al. [2020]. However, we cannot accurately predict the
likely impact of COVID NPIs on the prevalence of COVID-like symptoms in the general population over
the next year, and our model was based on typical levels in previous years. This has implications for
the number of tests required, as well as manual tracers and quarantine days required of symptom-based
TTI strategies.

• We do not account for the varying prevalence of COVID across di↵erent regions, demographics and
sectors, as well as the varying risk factors of COVID for di↵erent individuals. A surveillance system can
be important, both in the identification and management of local outbreaks, and in the incorporation of
a spatio-temporal predictive model for P(COVID positive | symptoms and covariates) to help improve
the e�ciency of a resource-constrained TTI system.

• It is di�cult to gauge public compliance towards a given TTI strategy. There are various socio-economic
factors that may need to be considered here, such as if contacts advised to isolate will be compensated
for lost income while they are quarantined. A recent study by [Bodas and Peleg, 2020] suggested that
public compliance towards self-isolation in Israel would drop from 94% to 57% if compensation was
removed.

2 Research in context

Evidence before this study Various previous studies have examined the e↵ectiveness of TTI as a strategy
to contain COVID. Initial work, such as Hellewell et al. [2020], focused on TTI e↵orts to contain the risk
arising from imported cases and so do not consider TTI in tandem with other NPIs. Similarly, Ferretti et al.
[2020] did not model the prospect of non-TTI NPIs and studied the use of digital app tracing to contain a
COVID epidemic.

More relevant to this current work, Kucharski et al. [2020] provides a framework (which we build on) using
real world primary-secondary contact pairs data in order to study the impact of combining TTI with other
NPIs, but did not consider the temporal and logistical considerations of a practical implementation of TTI.

Such considerations, such as changing infectiousness levels during the infectious period and the delay in
receiving test results, are modelled in Kretzschmar et al. [2020a], but they are unable to model realistic
NPIs, such as working from home, due to a more basic contact generation procedure. In a follow up work
concurrent to this present study, Kretzschmar et al. [2020b] analyse the impact that logistical delays in
the TTI procedure have on e↵ectiveness in terms of reducing R, and similarly conclude that it is crucial
to minimise any such delays in order to maximise the e↵ectiveness of TTI. Kretzschmar et al. [2020b] did
not study the resource requirements of di↵erent TTI strategies nor the possibility of symptomatic COVID
negative primary cases entering any given TTI system.

Added value of this study We seek to model both the combination of TTI with other NPIs as well
as the temporal and logistical considerations of a practical TTI implementation. In order to do this, we
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use real-world contact generation data combined with current estimates of epidemiological and logistical
parameters for the UK. We also consider the possibility of symptomatic COVID-free primary cases entering
any given TTI system, and the consequences of this for resource requirements of di↵erent TTI strategies.

Implications of all the available evidence Under realistic assumptions, our analysis suggests that
TTI has a moderate impact on reducing transmission on the COVID epidemic, and can be an important
component of an overall strategy to combat the spread of COVID, particularly if R is around 1, but that TTI
will not be su�cient on its own to contain the epidemic. To maximise the e↵ectiveness of a TTI strategy,
logistical delays such as the testing and manual tracing delays must be minimised, and public compliance
and engagement must be maximised.

3 Methods

Our simulation model consists of three stages: generation of the characteristics of primary cases, generation
of the contacts of the primary cases, and the application of test-trace-isolate strategies to the primary cases
and their contacts. We specialise the setting of our model to what might be expected during summer months
(June-August) in the UK, and to five scenarios corresponding to di↵erent levels of stringency of other NPIs.

Generation of primary cases We assume a total of 20k new COVID infections each day, split between
symptomatic and asymptomatic cases. This number is around the upper bound estimated by Flaxman et al.
[2020] for May 10. As there is no consensus for proportion of asymptomatic COVID cases, we followed
Kucharski et al. [2020] and set this at 40%, with asymptomatic infectiousness reduced by 50% relative to
symptomatic cases.

Alongside new COVID positive cases, we include a baseline of 100k COVID negative primary cases who
present COVID-like symptoms and may enter a given TTI system, thereby increasing resource requirements.
100k is around the estimated pre-pandemic number of individuals presenting symptoms of fever or cough on
any given day over the summer period in the UK according to Bug Watch [Smith et al., 2019]. While current
COVID NPIs are believed to have reduced the presentation of other respiratory illnesses, as demonstrated in
Hong Kong by Cowling et al. [2020], 100k is a reasonable worst case scenario for summer. For the infection
timeline of each COVID positive primary case, we assume a latent period of 3 days, a mean duration of 2
days of pre-symptomatic infectious period before reporting symptoms, and a non-uniform infection profile
over 10 days peaking on the day before the expected day of symptom presentation [He et al., 2020].

Generation of contacts We followed the model of Kucharski et al. [2020] for our contact generation.
In summary, we use the BBC Pandemic dataset (Klepac et al. [2018]), which contains data on the social
contacts of 40,162 UK participants, to simulate the number of daily close contacts of the primary case. The
total number of daily contacts for the primary case is broken down into the following categories: household,
work/school and other. To simulate secondary cases, we assume that each contact of the primary case has a
probability, known as the Secondary Attack Rate (SAR), of being infected over the course of the infectious
period, independent of the remaining contacts. We assume new non-household contacts for each day of the
simulation, whereas household contacts are assumed to have repeated contact with the primary case on each
day of simulation. As in Kucharski et al. [2020] we have separate SARs for household and non-household
contacts to model the fact that the close and repeated nature of household interaction implies household
contacts should be at greater risk of secondary infection. We set our SARs to give a base R of 3.87 in a
no NPIs scenario following Flaxman et al. [2020], whilst maintaining the same proportion (15%) of total
infections that are intra-household as in Kucharski et al. [2020]. This leads to a doubling time of 3.35 days
in a no NPIs scenario.

Detailed descriptions of the generation of primary cases and their contacts are given in Appendix A.
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TTI Strategy No TTI
Symptom-

based TTI
Test-based TTI

Test-based TTI

Test Contacts

Isolate Individual on Symptoms? Yes Yes Yes Yes

Quarantine Household on Symptoms? Yes Yes Yes Yes

Test Symptomatic Individuals? No Yes Yes Yes

Trace Contacts on Symptoms? No Yes No No

Trace Contacts on Positive Test? No No Yes Yes

Quarantine Traced Contacts? No Yes Yes Yes

Test Contacts? No No No Yes

Table 1: Main decisions points defining the TTI strategies considered.

Scenarios of other non-pharmaceutical interventions We consider five scenarios of combinations
of NPIs with varying stringency levels. These scenarios consider di↵erent levels of guidance for physical
distancing, working from home and school closures, and range from the most stringent (S5) which models
the lockdown scenario prior to May 9th, to medium stringency (S3) which models a scenario with more social
contacts, 50% of schools being open and 45% of the working population working from home, and S1 which
models no NPIs except for households being quarantined at home on presentation of symptoms. Detailed
description of the scenarios are given in Appendix B.

TTI Strategies The three core TTI strategies that we will analyse are summarised as follows:

• Symptom-based TTI: Start contact tracing and quarantine contacts as soon as a primary case reports
COVID-like symptoms.

• Test-based TTI: Start contact tracing and quarantine contacts once a primary case is confirmed by a
test to be COVID positive.

• Test-based TTI with contact testing: Start contact tracing and quarantine contacts once primary case
is confirmed by a test to be COVID positive. Test the contacts of a confirmed COVID positive primary
case.

For each strategy, including no TTI, the primary case and members of their household are asked to iso-
late/quarantine at home when the primary case first presents symptoms, following current UK government
guidelines (as of May 17th 2020). Contact tracing commences at either symptom presentation or test re-
turning positive, and all traced contacts are asked to quarantine for a total of 14 days. If traced contacts
show symptoms they are entered into the TTI system as primary cases themselves. If contacts are tested
and they test negative, they are released from quarantine. We assume isolation and quarantines prevent all
subsequent transmissions.

We model both NHSx app-based and manual contact tracing, assuming that 35% of the population will
download and regularly use the app. This is estimated assuming that around 60% of the population down-
loads the app (this is around the proportion of the Isle of Wight population who have downloaded the NHSx
app on May 10), and 60% of those downloads are regularly using it (this is on the lower side of estimates of
usage of the Zoe app). We assume a compliance level of 80% for both symptom reporting as well as requests
to quarantine or isolate. The success of TTI is highly sensitive to the compliance level, which can in turn be
a↵ected by appropriate public messaging, incentives and coordination with employers. We assume that the
time taken to obtain a test result is 2 days, and that it takes 1 day following this for contacts to be manually
traced (app tracing is assumed instantaneous).

Diagrams of these strategies can be found in Figure 1, and a table describing the options can be found in
Table 1. Details along with larger versions of the diagrams are given in Appendix C.
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TTI strategy S5 S4 S3 S2 S1

No TTI 0.78± 0.03 1.14± 0.04 1.59± 0.04 2.01± 0.05 2.34± 0.06
Symptom-based TTI 0.66± 0.02 0.94± 0.03 1.26± 0.04 1.65± 0.04 1.94± 0.05
Test-based TTI 0.69± 0.03 0.98± 0.03 1.37± 0.04 1.73± 0.04 2.02± 0.05
Test-based TTI, contact testing 0.69± 0.03 0.99± 0.03 1.35± 0.04 1.76± 0.05 2.04± 0.05

Table 2: Comparison of E↵ective R for di↵erent TTI strategies, for scenarios S5
to S1. Shown are mean R along with 95% confidence intervals over our 20k

primary cases.

4 Results

We first compare our three proposed TTI strategies (with default parameter settings) against no TTI, which
is the current (as of 17th May 2020) UK guideline of isolating primary cases and quarantining household
contacts when the primary case becomes symptomatic but no contact tracing. Table 2 shows the e↵ective
R across the five stringency levels S5 to S1. As we can see, the addition of contact tracing and quarantining
leads to modest reductions in R for across all five scenarios, and TTI should only be deployed as part of a
wider package of NPIs to keep R below 1 and control the epidemic. As an aside, even modest reductions in
R can lead to substantial reductions of absolute case numbers over time (see Appendix G for the expected
number of new primary cases across time for di↵erent values of fixed R during the exponential growth of
the epidemic).

Figure 2 compares e↵ective R, number of contacts manually traced, number of tests needed and number of
person-days that contacts spent in quarantine. In terms of resource requirements, it is clear that symptom-
based TTI requires significantly more manual traces and person-days in quarantine compared to test-based
TTI. This is due to the non-specific nature of COVID symptoms. The low specificity also has implications for
compliance with TTI guidance, and we expect lower compliance to guidance in symptom-based TTI, which
can in turn have a larger impact on R. When considering test-based TTI with and without contact testing, a
trade-o↵ emerges between the extra tests needed and the gained ability to safely release from quarantine the
uninfected contacts of COVID positive cases. However, antigen testing is insensitive during the incubation
period, so repeat testing will be necessary to avoid infected contacts being released prematurely (see Kucirka
et al. [2020]).

To understand the contribution of various measures and parts of the TTI system to the overall transmission
rate, we also consider a decomposition of the total number of potential transmissions that could have occurred
into six categories. Note that each potential transmission is either prevented or occurs (given a set of
measures). If prevented, the reason is one of the following three: social distancing NPIs (including working
from home and reductions in non-household contacts), isolation of symptomatic index case and quarantining
of their household, or secondary extra-household contact tracing and quarantining. If the transmission occurs,
the reason is one of the following three: index case being asymptomatic, index case being symptomatic but
failing to report symptoms, or transmission arising due to imperfect contact tracing for a symptomatic index
case. More specifically, imperfect tracing is due to secondary cases that are never traced, delays in tracing
and traced secondary cases being non-compliant.

Figure 3 shows this breakdown for each of the five NPI stringency levels assuming test-based TTI is in place.
As shown, social distancing is responsible for a large portion of prevented transmissions for stringency levels
S3-S5. As the stringency level of the NPI is reduced to S1-S2, index case isolation alongside quarantining of
their household becomes responsible for the majority of prevented transmissions. For all stringency levels,
tracing is responsible for a relatively small portion of the overall prevented transmissions. On the other
hand, of transmissions that do occur, the majority (around half) are due to asymptomatic index cases across
all stringency levels (this depends crucially in the model on the assumption of 40% of COVID positive cases
being asymptomatic with halved infectiousness), followed by transmissions from symptomatic index cases
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Figure 2: Impact on e↵ective reproduction number R and resource requirements of various TTI strategies,
across five sets of NPIs with di↵erent stringency levels, for 100k primary cases with symptoms but COVID
negative and 20k COVID positive primary cases, as described in Section A.1. Resource requirements are
displayed in thousands.
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Figure 3: Analysis of how potential cases are prevented or transmitted and by what means for the 5 stringency
levels of lockdown with test based tracing. Proportions of transmissions are represented in terms of their
contribution to the e↵ective R.

that failed to report (which depends on compliance levels within the population).

Having demonstrated that TTI should be adopted in unison with other NPIs, and that test-based TTI is a
good compromise between resource requirements and reductions in R, we now analyse three specific areas in
which policy can help to improve the e↵ectiveness of test-based TTI: the time delay in testing and tracing,
the level of public compliance, and the uptake of the app. Figure 4 shows the contributions to R from each
NPI and part of the TTI system for the S3 stringency scenario, while Figure 5 shows the resulting R across
the five scenarios as we vary test/trace delays and compliance.

We find that the most important factor determining TTI e↵ectiveness is the level of public compliance with
TTI guidance to report symptoms, get tested, isolate and quarantine. Figures 5 (Right) and 4 (Top Right),
highlight the benefit of increasing public compliance towards TTI measures. There is a clear reduction in R
across all TTI strategies as compliance is increased in the S3 scenario.

We next evaluate the impact on R of the time delay in testing and manual tracing for the test-based TTI
strategy. The results are shown in Figures 5 (Left) and 4 (Bottom Left). The testing delay is the time
between the primary case reporting symptoms and the results of a test being returned, while the manual
tracing delay is the time between a primary case being confirmed COVID positive and the identification
and quarantining of their contacts. The results indicate that, in order for the test-based TTI strategy to
be e↵ective, both of these delays should be reduced. This is particularly important in the context of less
stringent NPIs such as S1-S2, in which social contacts are more numerous and containment relies heavily on
testing and tracing. However, we find non-negligible reductions in the e↵ective R across all NPIs considered
when the delays are reduced.

Figure 4 (Top Left), shows the e↵ect on R of changes in app uptake. We see that there is a slight downward
trend in mean e↵ective R as app uptake is increased, keeping all other parameters constant. One reason for
this is that our default setting for manual tracing delay is just 1 day, compared to no delay for app-based
tracing. If viewed in the context of a longer manual trace delay, this chart would further emphasise the
critical role of the app in reducing R. We note that under the current system, an increase in app usage does
not cause a reduction in the number of manual traces required. The primary case will not know which of
their contacts have been traced through the app, nor will the manual tracers, therefore it is still necessary
to trace manually as many contacts as possible. On the other hand, the app will help trace those contacts
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Figure 4: The impact on the percentage of ongoing transmission reduced by TTI of changing the application
uptake rate, the policy compliance rate, and reducing delays for testing and manual tracing for the S3 severity
levels and using the test-based TTI strategy.

Figure 5: Impact of testing/tracing delays and compliance on R, for the test-based TTI strategy.
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that are unable to be manually traced, e.g. those unknown to the primary case. Better coordination between
app-based and manual tracing systems could potentially reduce the resulting manual tracing e↵ort required.

Note that in Figure 4 the overall e↵ects on R of test/trace delays and app uptake are relatively small
compared to the e↵ect of policy compliance. This is because while the e↵ects of both on the subpopulation
that is known to the TTI system are substantial, this subpopulation represents a relatively small part of
the entire population. Other details on the e↵ects of compliance, delays and app uptake are presented in
Appendix E.

Appendices

A Case and Social Contact Generation

We use a single stage transmission model consisting of a simulated primary case with simulated social
contacts. We assume the primary case is infectious for 10 days, with our simulation starting when the
primary case becomes infectious and ending 10 days thereafter.

For each primary case, we simulate whether they are asymptomatic COVID positive, symptomatic COVID
negative, or symptomatic COVID positive. We also simulate their age and whether they will report COVID-
like symptoms (should they have them) during the simulation. If the primary case does report symptoms,
we further simulated the day on which they report them. Social contacts made during the infectious period
are generated conditional on the age of the case and are categorised as home, work/school and other. The
number of daily contacts made in each of these categories is sampled according to the BBC Pandemic dataset
(Klepac et al. [2018]) and then fixed for the duration of the simulation. The home contacts are assumed to
repeat their contact with the primary case each day, while each of the work and other contacts encounter
the primary case only once during the simulation.

If the primary case is COVID positive, then each of their contacts su↵ers a risk of infection for each encounter
with the primary case (which is drawn independently for each encounter). The risk of infection for a
home contact over the simulation period is larger than that of a contacts in the work and other categories.
Consistent with recent research He et al. [2020], we model the risk of infection due to an encounter with the
primary case as varying over the infectious period, see Figure 6 and Section A.3.

A.1 Primary Case Generation

In this section, we provide a more detailed description of the primary case generation procedure. A case is
generated as described below. See this in conjunction with the parameter choices given in Table 3.

1. Sample whether age of case is under 18 according to probability p under18.

2. Sample the presentation of case: symptomatic COVID negative, asymptomatic COVID positive or
symptomatic COVID positive.

3. If case is symptomatic: sample whether they will report symptoms according to the probability
compliance level, otherwise, case is considered unreported.

4. If case reports symptoms: sample the day of reporting during the 10 day infectious period.

5. If case reports symptoms: sample whether reporting is done through app with probability app coverage,
otherwise, reporting is done manually.
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Parameter Setting Notes

p under18 0.21

Probability that the case is under 18 years of
age. This a↵ects contact sampling from BBC
Pandemic dataset (Klepac et al. [2018]).

presentation ⇠ Categorical
�
100
120 , 0.4⇥

20
120 , 0.6⇥

20
120

�
Distribution over whether primary case is
symptomatic COVID negative, asymptomatic
COVID positive or symptomatic COVID pos-
itive respectively.

compliance level 80%

Proportion of individuals who will comply with
government guidelines, report symptoms when
they occur, and comply with a quarantine on
being traced as a contact.

app coverage 0.35
Probability that a primary case has the app and
uses it.

day of reporting
⇠ Categorical(0, 0.25, 0.25, 0.2, 0.1, 0.05,

0.05, 0.05, 0.05, 0.00)

Distribution over days that primary case re-
ports COVID-like symptoms and isolates, given
that case is symptomatic and decides to report
symptoms. Contacts are assumed to be pre-
vented starting from day of reporting and iso-
lation.

Table 3: Modelling choices for case generation

A.2 Simulating Social Contact

Once a case has been generated following the procedure in Section A.1, we simulate their contacts and
resulting COVID transmissions, if any. For each simulated contact, we record the day of first encounter
with primary case during the infectious period, whether COVID transmission occurred and, if so, the day
of transmission. The simulation of contacts and resulting secondary cases is described below. This is in
conjunction with parameter choices given in Table 4. Note the procedure below applies if case is over 18.
If case is under 18, the procedure is identical, but with n work replaced by n school.

1. Sample a participant from the BBC Pandemic dataset, yielding the numbers n home, n work and
n other of daily home, work and other contacts the participant had respectively. We assume case
has repeated contact with all n home contacts on all 10 days. For work and other contacts, we assume
case has contact with n work and n other new contacts on all 10 days.

2. If case is symptomatic COVID positive, for each contact, sample whether the contact resulted in
transmission:

(a) For home: with probability sar home, the contact becomes infected. If the contact is infected, the
day of infection is sampled from the infection profile for home contacts. Our default value
for sar home is 0.3.

(b) For work/other: with probability p, contact results in transmission, defining

p = 10⇥ s⇥ k

where s is sar work or sar other (we set the default values for both to be the same at 0.045
but one could in theory model di↵erences for di↵erent contact types) which is the probability
that an average non-household contact becomes infected by the primary case. k is the value of
the infection profile (for work/other contacts) for the day of encounter between case and the
contact. p is chosen here as above to maintain both the correct average number of secondary
non-household cases and the correct infection profile.

3. If case is asymptomatic COVID positive, perform step 2, with all secondary attack rates scaled by
asymptomatic factor.
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4. If case is symptomatic COVID negative, all contacts are uninfected.

Parameter Setting Notes

asymptomatic factor 0.5

Factor by which to reduce probability of
transmission when the primary case is asymp-
tomatic following Kucharski et al. [2020].

sar home: 0.3, work: 0.045, other: 0.045

Secondary attack rate. Marginal probability
a contact (in respective category) is infected
by primary case over the duration of the in-
fectious period.

infection profile
Derived from He et al. [2020]. See Fig-

ure 6 and Section A.3.

Proportional to the probability that contact
is infected given day of encounter. Draw in-
dependently for each day of contact.

Table 4: Modelling choices for transmission.

Our Secondary attack rates (SARs) are chosen to give a base R of 3.87 when no NPIs are adopted and
there is no isolation of a primary case at all for the duration of their infectious period. This is higher than
in Kucharski et al. [2020] but consistent with other studies into the initial reproduction number, such as
Flaxman et al. [2020]. Morever, under the assumptions of no repeat contacts, fixed latent period of 3 days
and our infection profile (which is described in Section A.3), it is possible to calculate for a given R what the
doubling time of pandemic will be; see for example Wallinga and Lipsitch [2007]. Under these assumptions,
a base R = 3.87 gives an estimated doubling time of 3.35 days, which is in line with longer estimates of the
pre-lockdown doubling time in Europe from a recent study by Ke et al. [2020]. In practice, factoring into
account repeat household contacts will further reduce our estimated doubling time. The assumption of a
mean 3 day latent period is consistent with a 5 day incubation period, as suggested by Bi et al. [2020], and
a 2 day pre-symptomatic infectious period, as suggested by He et al. [2020].

Finally, we choose our household SAR and non-household SAR in order to keep the total proportion of
infections that are within household in agreement with Kucharski et al. [2020], while maintaining a base R
of 3.87.

A.3 Modelling secondary infection risk over time

To capture the temporal aspects of TTI policies it is crucial to model the secondary infection risk over the
infectious period, which is how the distribution of the initial infection of secondary contacts varies over the
length of time that a primary case is infectious. In order to do this, we need to understand the timeline of
infection for the primary case. When a case is infected it is widely supposed for COVID that there is an
initial latent period of around 3 days, when the case is neither infectious nor symptomatic (He et al. [2020]).
For our purposes, the latent period of the primary case is not important, as a result, we only start modelling
primary cases once they become infectious, like in Kucharski et al. [2020]. However it is important to note
that we will be interested in the latent period of the positive secondary contacts, in order to count the
fraction of the secondary contact’s infectious period before they are traced by our TTI policies, as described
in Appendix D

At this point, in order to capture the secondary infection risk over time we need to model the infectiousness
profile, which is the distribution of relative infectiousness of the primary case over the course of his/her
infectious period. The infectiousness profile often assumes t = 0 to be the time when the infector develops
symptoms. However, we will set t = 0 to be the start of the infectious period, because that is the point from
which our model starts simulating cases and contacts.

One way to approximate the infectiousness profile would be to collect viral shedding data of the primary
case over the course of the infectious period. For our purposes, the infectiousness profile is useful as it is
exactly the distribution of when positive secondary contacts are infected for contacts who are only met once
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during the infectious period, and if there is a constant number of such new contacts each day. In our model
this is the case for work and other contacts, and hence the infectiousness profile is exactly the secondary
infection risk distribution for our non-household contacts.

The recent findings of He et al. [2020], inferred that the infectiousness profile should be skewed towards early
transmission, with 44% (95% confidence interval, 25%-69%) presymptomatic transmission. Indeed, He et al.
[2020] fit a Gamma distribution to the inferred infectiousness profile using data of 77 known transmission
pairs, with shape parameter 2.11 and rate parameter 0.69.

One has to be careful of the distinction between relative infectiousness of primary cases, measured in terms
of viral shedding, and the relative likelihood of when a repeated secondary contact, such as a household
contact who goes on to be infected, was initially infected with COVID. For example, Uniform infectiousness
over the infectious period will correspond to a Geometric distribution for the initial infection of a secondary
contact who the primary case meets everyday. Because most of the pairs of data that He et al. [2020]
fit were repeated contacts, this means that the Gamma distribution they fit has undue bias towards early
and/or presymptomatic infection. In order to account for this bias, we will use shape parameter 2.8 and rate
parameter 0.69 to model our infectiousness profile. That is to say, the mean time of infection for secondary
non-household contacts will be delayed by one day relative to the fitted Gamma distribution in He et al.
[2020]. Our model uses a discretised version of this fitted Gamma distribution for the infectiousness profile
of our primary cases over the infectious period. We present a sensitivity analysis for our assumptions in
Appendix F.

For household contacts, because our model assumes that home contacts are met everyday as opposed to
work/other daily contacts who are di↵erent contacts each day, this implies that the distribution of when a
home secondary contact was infected is skewed more towards early transmission, as can be seen in Figure 6.
To sample from this distribution, we first sample if a household contact was infected at all by the primary
case over the infectious period, with Bernoulli probability sar home. Then, for infected household contacts,
the day on which they were infected can be sampled by flipping a coin each day of the infectious period
independently with probability heads equal to the infectiousness profile on that day. The process stops
either when we get first heads or when we get to the end of the infectious period. If we get to the end of the
infectious period without a heads, we return to the first day of the infectious period and repeat this process
of coin flipping until we reach a first heads, which will almost surely occur eventually. The day on which the
first heads lands is the day of transmission.

We choose to discretise over an infectious period of ten days compared to only a five day period in Kucharski
et al. [2020]. This is in line with the assumption that the presymptomatic period lasts for approximately
2-3 days on average and that infectivity is much lower after the first week of symptom onset, as shown in
Wölfel et al. [2020]. We assume that the infectiousness profile is identical across primary cases, including
asymptomatic cases, following the discretised Gamma distribution.

Figure 6: Our assumed distribution (blue/orange) of initial exposure to COVID for positive secondary cases.
We compare to Kucharski et al. [2020] (black dotted line).
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B Scenarios of Other Non-pharmaceutical Interventions

We consider the impact of TTI strategies in the context of a range of scenarios with varying stringencies for
other non-pharmaceutical interventions (NPIs). These are:

1. S5 - Lockdown (up to 9th May 2020)

2. S4 - Slightly relaxed work and social restrictions

3. S3 - Moderately relaxed work and social restrictions

4. S2 - Strongly relaxed work and social restrictions

5. S1 - No social restrictions, but quarantining of symptomatic households remains in place

Attribute S5 S4 S3 S2 S1 Notes

work from home proportion 65% 55% 45% 25% 0%

The proportion of the popula-
tion not going into their regu-
lar workplace. 35% of people
are not going into work as usual,
and 45% are working from home
(as of 07/05/2020, ONS [2020]).

school from home proportion 100% 100% 50% 0% 0%
The proportion of school-aged
children not going into schools

max other contacts 1 4 10 20 -
A hard limit placed on the num-
ber of non-home, non-work con-
tacts a person has per day.

work met before proportion 79% 79% 79% 79% 79%

The average proportion of work
contacts a person has met be-
fore, allowing them to manually
trace a contact. Taken from
Klepac et al. [2018].

school met before proportion 90% 90% 90% 90% 90%

The average proportion of
school contacts a person has
met before, allowing them
to manually trace a contact.
Taken from Klepac et al. [2018].

other met before proportion 100% 100% 90% 75% 52%

The average proportion of other
contacts a person has met be-
fore, allowing them to manually
trace a contact. Taken propor-
tion from Klepac et al. [2018],
adjusted for lockdown.

Table 5: Parameters for di↵erent NPI severity levels

Each of these scenarios modify a further set of parameters that influence the e↵ectiveness of a TTI strategy.
These are listed in Table 5. These parameters a↵ect two factors: the reduction in number of contacts a given
person has due to social distancing measure, and how likely it is to trace a particular contact during the
stages of lockdown.

The work from home proportion and school from home proportion govern the fraction of adults and chil-
dren not going to their normal place of work/school. Each primary case has these probabilities of not going
to work/school, in which case we remove all of the work/school contacts for that individual.
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The max other contacts parameter governs the e↵ects of general social distancing, and sets the maximum
other contacts of a primary case each day.

C TTI Strategies

In this section we describe how we model di↵erent TTI strategies.

Three types of case pass through the TTI funnel:

• Symptomatic COVID cases.

• Asymptomatic COVID cases.

• Cases presenting with COVID-like symptoms, but COVID negative.

From the perspective of TTI, asymptomatic COVID cases are invisible and contribute to an unavoidable
baseline R that only other NPIs, like physical distancing measures, can help reduce. On the other hand,
cases that present symptoms similar to COVID, but are not COVID positive, can only contribute to an
increase in the cost of TTI and have no impact on R.

We consider three options for contact tracing, with decisions made around when to isolate the contacts of an
individual, and whether to test contacts of positive cases, or just quarantine them. These can be summarised
as:

1. Isolate all contacts on a primary case presenting with symptoms.

2. Isolate household contacts immediately, and isolate non-household contacts upon positive COVID test.

3. Isolate household contacts immediately, and isolate non-household contacts upon positive COVID test.
Test these contacts for COVID.

We consider test-based TTI as the baseline strategy. test-based TTI with contact testing trades o↵ using
extra tests to get contacts who are not infected out of quarantine quicker. Symptom-based TTI isolates
contacts faster, to allow them less chances to cause new infections, but will cause the quarantining of many
additional people from cases presenting like COVID that are not in fact COVID. Flow charts for these
strategies are shown in Figures 7, 8 and 9.

We suppose that symptomatic cases have two routes via which they can enter the TTI system: by submitting
symptoms manually to the NHS or by using the NHSx app. The proportion of the population with the app
is governed by the app coverage parameter, and is sampled independently for each case and contact. If a
case is sampled as having the app, they are assumed to use it to report symptoms and allow the use of app
tracking. We assume that some cases do not submit symptoms, due to either not taking them serious enough,
or not complying with the guidelines. In our model this is governed by the policy compliance parameter.
This compliance also applies to contacts traced, sampled independently for each case and contact.

If the symptomatic primary case enters the TTI system they are assumed to follow the government guidelines
and isolate at home alongside the rest of their household. We make this assumption as to have been tested,
a case would have to have already voluntary reported symptoms. In the case where no contact tracing is
being performed, we assume that no tests are performed on symptomatic individual who reports symptoms
(or would have report symptoms), but they do still isolate at home, as is the current situation.

There is a delay in getting test results back, and this delay is governed by the test delay parameter in our
model. Given that there is a significant delay between testing an individual and getting a result, a choice
is presented here: do we perform contact tracing before, or after the test results? Both of these options are
explored.

Upon initiating contact tracing, a case’s contacts are traced manually, and also via the app if the case
has the app. App based tracing succeeds with a probability governed by the app coverage parameter,
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Attribute Current setting Notes

app coverage 35%
The proportion of the population who
take up using the NHSx tracing app

test delay 2 days
Delay between test and result, assumed
0 days in Kucharski et al. [2020]

manual trace delay 1 day
Delay between a test result and notify-
ing contacts manually, assumed 0 days
in Kucharski et al. [2020]

app trace delay 0 days
Delay between a test result and notify-
ing contacts via app, assumed 0 days in
Kucharski et al. [2020]

policy compliance 80%

Proportion of individuals who will com-
ply with the government guidelines, re-
port symptoms when they occur, and
comply with a quarantine on being
traced as a contact.

quarantine length 14 days Length of quarantine

Table 6: Parameters describing pinch points, policy features and population characteristics used when sim-
ulating TTI strategies.

sampled independently for each contact. Manual tracing succeeds if a person is able to identify a contact
and provide details of them. Using data from Klepac et al. [2018] we calculate the likelihood a person
has met a contact before at work, at school and elsewhere (denoted as other category). These are encoded
in the work met before proportion, school met before proportion and other met before proportion.
These probabilities are sampled independently for each contact to see if manual contact tracing is e↵ective.
We also assume a fixed time delay in contacting a person’s contact from the point at which we decided
to quarantine them. These delays are encoded in the manual trace delay and app trace delay. Once
a person is traced, they comply with the quarantine with probability defined by the policy compliance
parameter.

For non-household contacts, once they are traced by the TTI system (either before or after the test results),
they are advised to isolate themselves at home for 14 days. If they have isolated on notification of symptoms
of a primary case, and if that person is tested and comes back negative, the contacts are released from
quarantine. If they have quarantined after notification of a positive test of the primary case, they remain in
the quarantine the full 14 days. We consider also an additional scenario where the contacts of an individual
are tested on a positive test of a primary case. In order to avoid further simulation, we suppose that a
fraction of positive secondary contacts will go on to become COVID positive in line with our assumptions
in section A.2. In this case, if a contact tests negative they may be released from quarantine early.

A full table of the parameters used in the TTI strategies can be found in Table 6. We choose realistic defaults
for these in line with current situation in the UK, and perform sensitivity analysis over them later to see
either the e↵ect of expending e↵ort to improve these parameters, or to account for errors in our assumptions.

D Metrics to evaluate TTI strategies

One key goal of this study is to compare the e↵ectiveness and cost of various TTI strategies.

In terms of cost, we report results for the number of: manual traces, tests required, and person-days spent
in quarantine.

In terms of e↵ectiveness, the main metric we use is the e↵ective R number that our strategies result in. It
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Figure 7: Diagram of an individual passing through a symptom based TTI system
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Figure 8: Diagram of an individual passing through a test based TTI system
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Figure 9: Diagram of an individual passing through a test based TTI system with testing of contacts
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is possible during contact tracing that we do not manage to notify a contact that they are infections before
they become infectious. We count these infectious contacts partially as follows: For each such secondary
contact, we add a fraction between 0 and 1 to the primary case’s individual R number that is:

• 0 if the the infection was prevented via isolation of the primary case or other NPIs,

• 1 if the TTI system did not trace the infected contact, including if the primary case was asymptomatic
or did not report symptoms, and

• the fraction of the secondary contact’s infectious period before they were traced and quarantined by the
TTI system, weighted by the infectiousness profile as described in Appendix A.3. We assume a default
3 days for the pre-infectious latent period of the secondary contact as consistent with He et al. [2020].
This fraction reflects the reduction in transmission as a result of contact tracing and quarantining. As
for the primary case, there is some chance for the contact to ignore the quarantine request, in which
case this is counted as 1.

E Key parameters for the e↵ectiveness of TTI strategies

This appendix contains additional results investigating the e↵ect of various parameters on the e�cacy of
TTI strategies, expanding the results in the main text.

In Figure 10 we consider variation in application uptake and compliance within the population for all TTI
strategies. In the left hand column, we examine the e↵ect of increasing app uptake on the e↵ective R of TTI
strategies, we see that the app is most significant as the NPI severity level is decreased. In the right hand
column we observe that compliance with requests to isolate and to contact tracing is a highly significant
factor in the e↵ectiveness of TTI strategies.

Figures 11-15, Bottom Left show the proportion of ongoing transmission that is prevented by TTI under the
test-based TTI strategy, and how this varies with delays in testing and manual tracing on the proportion
of ongoing transmissions prevented by test-based TTI. Note the increase in e↵ectiveness of TTI as the total
delay decreases.

Figures 11-15 Top Left likewise show how this varies with uptake of the app. We observe that the proportion
of ongoing transmissions prevented by TTI increases as application uptake increases, especially for lower
severity levels. This is due to more e↵ective tracing and isolating of the contacts of the primary case. The
variation between severity levels is due to variation in numbers of contacts for primary cases (due to social
distancing).

Finally, Figures 11-15 Top Right shows how the proportion of ongoing transmission that is prevented by
test-based TTI varies with public compliance in the context of various levels NPI severity. We see that public
compliance significantly improves TTI e↵ectiveness. Under lower severity NPIs there is more social contact,
so compliance becomes more significant.

F Sensitivity analysis

This appendix investigates the sensitivity of our model to a number of assumptions we have made about the
number of COVID cases in the UK, and the typical timeline of a COVID infection.

Figure 16 shows the variation in the number of tests needed for TTI strategies under changes in the number
of COVID positive cases and the number of COVID negative cases with COVID like symptoms. Our results
are consistent across these case for all severity levels S5-S1. Across the cases, the increase in tests needed
for the TTI strategies is due to an increased number of symptomatic individuals.

Figure 17 considers variation in the e↵ective R of TTI strategies under changes in the timeline of a COVID
infection. Again we observe that, within measurement error, our results are consistent across the cases. In
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Figure 10: Left: E↵ect of varying the app uptake on e↵ective R. Right: E↵ect of varying the policy
compliance on e↵ective R. Top to Bottom: S5 down to S1.
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(a) (b) (c) (d) (e) (f)
App Uptake

10% 64% 16% 2% 3% 6% 9%
20% 64% 16% 2% 3% 6% 9%
30% 65% 16% 2% 3% 5% 9%
40% 64% 16% 2% 3% 6% 9%
50% 65% 16% 2% 3% 5% 8%
60% 64% 16% 3% 3% 6% 8%
70% 64% 16% 2% 3% 6% 9%
80% 64% 16% 3% 3% 5% 9%
90% 65% 16% 3% 3% 5% 9%
100% 64% 16% 3% 3% 6% 8%

(a) (b) (c) (d) (e) (f)
Compliance

50% 64% 9% 1% 3% 14% 9%
60% 65% 11% 1% 3% 11% 9%
70% 64% 14% 2% 4% 8% 9%
80% 64% 16% 2% 3% 6% 8%
90% 65% 18% 3% 3% 3% 8%
100% 64% 21% 3% 3% 0% 9%

(a) (b) (c) (d) (e) (f)
Delay

3/3 64% 16% 1% 5% 6% 8%
3/2 64% 16% 1% 4% 6% 8%
2/3 64% 16% 1% 4% 6% 8%
3/1 64% 16% 2% 4% 6% 8%
2/2 64% 16% 2% 4% 6% 8%
1/3 64% 16% 2% 4% 6% 8%
2/1 64% 16% 2% 3% 6% 8%
1/2 64% 16% 2% 3% 6% 8%
1/1 64% 16% 3% 3% 6% 8%

Figure 11: The impact on the percentage of ongoing transmission reduced by TTI of changing the application
uptake rate, the policy compliance rate, and reducing delays for testing and manual tracing for the S5 severity
levels and using the test-based TTI strategy.
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(a) (b) (c) (d) (e) (f)
App Uptake

10% 49% 22% 4% 5% 8% 12%
20% 49% 21% 4% 5% 8% 12%
30% 49% 22% 4% 5% 7% 12%
40% 49% 21% 4% 5% 8% 13%
50% 49% 22% 4% 5% 8% 12%
60% 49% 22% 4% 5% 8% 12%
70% 48% 22% 4% 4% 8% 13%
80% 49% 22% 5% 4% 8% 12%
90% 49% 22% 5% 4% 7% 12%
100% 49% 22% 5% 4% 8% 12%

(a) (b) (c) (d) (e) (f)
Compliance

50% 49% 13% 2% 5% 20% 13%
60% 49% 16% 2% 5% 15% 13%
70% 49% 19% 3% 5% 11% 12%
80% 49% 22% 4% 5% 8% 12%
90% 50% 25% 5% 5% 4% 12%
100% 48% 29% 6% 4% 0% 12%

(a) (b) (c) (d) (e) (f)
Delay

3/3 49% 22% 2% 7% 8% 12%
3/2 49% 22% 2% 7% 8% 12%
2/3 49% 22% 3% 7% 8% 12%
3/1 49% 22% 3% 6% 8% 12%
2/2 49% 22% 3% 6% 8% 12%
1/3 49% 22% 3% 6% 8% 12%
2/1 49% 22% 4% 5% 8% 12%
1/2 49% 22% 4% 5% 8% 12%
1/1 49% 22% 5% 4% 8% 12%

Figure 12: The impact on the percentage of ongoing transmission reduced by TTI of changing the application
uptake rate, the policy compliance rate, and reducing delays for testing and manual tracing for the S4 severity
levels and using the test-based TTI strategy.
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(a) (b) (c) (d) (e) (f)
App Uptake

10% 31% 29% 6% 7% 11% 17%
20% 31% 28% 6% 7% 11% 17%
30% 31% 29% 6% 7% 10% 17%
40% 31% 28% 6% 7% 11% 17%
50% 31% 29% 6% 7% 10% 17%
60% 31% 29% 6% 7% 11% 17%
70% 30% 29% 6% 6% 11% 17%
80% 31% 29% 7% 6% 11% 17%
90% 31% 29% 7% 6% 10% 17%
100% 31% 29% 8% 5% 11% 17%

(a) (b) (c) (d) (e) (f)
Compliance

50% 31% 17% 2% 6% 26% 17%
60% 31% 21% 3% 7% 21% 17%
70% 31% 25% 5% 7% 15% 17%
80% 31% 29% 6% 7% 10% 17%
90% 31% 33% 7% 7% 6% 17%
100% 31% 37% 9% 6% 0% 17%

(a) (b) (c) (d) (e) (f)
Delay

3/3 31% 29% 3% 11% 10% 17%
3/2 31% 29% 4% 10% 10% 17%
2/3 31% 29% 4% 10% 10% 17%
3/1 31% 29% 5% 9% 10% 17%
2/2 31% 29% 5% 8% 10% 17%
1/3 31% 29% 5% 8% 10% 17%
2/1 31% 29% 6% 7% 10% 17%
1/2 31% 29% 6% 7% 10% 17%
1/1 31% 29% 7% 6% 10% 17%

Figure 13: The impact on the percentage of ongoing transmission reduced by TTI of changing the application
uptake rate, the policy compliance rate, and reducing delays for testing and manual tracing for the S3 severity
levels and using the test-based TTI strategy.
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(a) (b) (c) (d) (e) (f)
App Uptake

10% 13% 36% 7% 10% 13% 21%
20% 14% 35% 7% 10% 13% 21%
30% 13% 36% 7% 10% 13% 21%
40% 13% 35% 7% 9% 14% 21%
50% 13% 36% 8% 9% 13% 21%
60% 13% 36% 8% 9% 13% 21%
70% 12% 36% 8% 8% 14% 21%
80% 13% 36% 9% 8% 13% 21%
90% 14% 36% 10% 7% 13% 21%
100% 13% 35% 10% 6% 14% 21%

(a) (b) (c) (d) (e) (f)
Compliance

50% 13% 21% 3% 8% 33% 21%
60% 13% 26% 4% 9% 27% 21%
70% 13% 31% 6% 10% 19% 21%
80% 13% 36% 7% 10% 13% 21%
90% 14% 40% 9% 9% 7% 21%
100% 13% 46% 11% 9% 0% 21%

(a) (b) (c) (d) (e) (f)
Delay

3/3 13% 36% 3% 14% 13% 21%
3/2 13% 36% 4% 13% 13% 21%
2/3 13% 36% 5% 12% 13% 21%
3/1 13% 36% 6% 11% 13% 21%
2/2 13% 36% 6% 11% 13% 21%
1/3 13% 36% 6% 11% 13% 21%
2/1 13% 36% 7% 10% 13% 21%
1/2 13% 36% 8% 9% 13% 21%
1/1 13% 36% 9% 8% 13% 21%

Figure 14: The impact on the percentage of ongoing transmission reduced by TTI of changing the application
uptake rate, the policy compliance rate, and reducing delays for testing and manual tracing for the S2 severity
levels and using the test-based TTI strategy.
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(a) (b) (c) (d) (e) (f)
App Uptake

10% 0% 41% 7% 12% 15% 24%
20% 0% 41% 7% 12% 16% 24%
30% 0% 41% 8% 12% 14% 24%
40% 0% 40% 8% 12% 16% 24%
50% 0% 41% 9% 11% 15% 24%
60% 0% 41% 9% 11% 15% 24%
70% 0% 41% 10% 10% 16% 24%
80% 0% 41% 10% 9% 15% 24%
90% 0% 41% 11% 8% 15% 24%
100% 0% 40% 12% 8% 16% 24%

(a) (b) (c) (d) (e) (f)
Compliance

50% 0% 25% 3% 10% 38% 24%
60% 0% 30% 4% 11% 31% 24%
70% 0% 36% 6% 12% 22% 24%
80% 0% 41% 8% 12% 15% 24%
90% 0% 46% 10% 12% 8% 24%
100% 0% 52% 12% 12% 0% 24%

(a) (b) (c) (d) (e) (f)
Delay

3/3 0% 41% 4% 16% 15% 24%
3/2 0% 41% 5% 15% 15% 24%
2/3 0% 41% 5% 15% 15% 24%
3/1 0% 41% 6% 14% 15% 24%
2/2 0% 41% 6% 13% 15% 24%
1/3 0% 41% 7% 13% 15% 24%
2/1 0% 41% 8% 12% 15% 24%
1/2 0% 41% 8% 12% 15% 24%
1/1 0% 41% 9% 11% 15% 24%

Figure 15: The impact on the percentage of ongoing transmission reduced by TTI of changing the application
uptake rate, the policy compliance rate, and reducing delays for testing and manual tracing for the S1 severity
levels and using the test-based TTI strategy.

27



Figure 16: Left: E↵ect of varying number of new COVID cases per day on the number of tests needed.
Right: E↵ect of varying the number of COVID negative cases with COVID-like symptoms on the number
of tests needed. The number of tests required for symptom-based TTI is the same as for test-based TTI, as
we assume all primary cases are tested. Top to Bottom: S5 down to S1.

28



Figure 17: Left: E↵ect of varying the most infectious day of the infectious period for COVID cases on R.
Middle: E↵ect of varying expected day of symptom reporting (measured from after the end of the latent
period) on R. Right: E↵ect of varying the latent period on R. Top to Bottom: S5 down to S1.
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the left hand column, the e↵ective R of TTI strategies is reduced if the primary case is most infectious later
in the lifetime of their infection; here, the primary case causes fewer secondary infections before isolation. In
the middle column we see a similar phenomena in reverse: the e↵ective R increases with the time taken for
a primary to report symptoms and isolate. In the right hand column we see that the e↵ective R is relatively
insensitive to the length of the latent period. Increased latent period allows TTI more time to track contacts
of a primary case before they become infectious (if infected).1

G Relationship between number of cases and R
Figure 18 displays the exponential growth over 30 days of an epidemic seeded with 20k infectious primary
cases, for our assumptions of infectiousness profile and latent period, for di↵erent settings of R > 1. We
calculated the growth rate using Equation 2.7 of Wallinga and Lipsitch [2007]. Note that our calculations
assume that the infectiousness profile and latent period are constant no matter the value of R, and also this
calculation does not consider repeated contacts such as household contacts. Moreover, Figure 18 assumes
that the level of R is fixed over time, which may not reflect reality. However, Figure 18 does highlight the
fact that even small changes to R that result from TTI can be crucial in combating the spread of COVID.

Figure 18: Relationship between expected number of new cases and R over time.
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